Optical Band Gap of PMMA: Cody, ASF, and DASF Methods Compared to Tauc

Authors

  • Allif Rosyidy Hilmi Hilmi Department of Physics, Faculty of Engineering and Science, Universitas Pembangunan Nasional "Veteran" Jawa Timur
  • Yofinda Eka Setiawan UPN "Veteran" Jawa Timur
  • Nailul Hasan Universitas Pembangunan Nasional "Veteran" Jawa Timur

Keywords:

PMMA, Optical Band Gap, Tauc Method, Cody Method, ASF Method, DASF Method

Abstract

This study aimed to determine the optical band gap of polymethyl methacrylate (PMMA) using alternative methods to the conventional Tauc plot. PMMA was prepared by solution casting and characterized using UV–Vis spectroscopy. The optical band gap was approximated by applying the Cody, Absorption Spectrum Fitting (ASF), and Derivative ASF (DASF) methods, and the results were compared with those from the Tauc approach. The optical band gap values ranged from 3.10 eV to 4.94 eV, which fall within or near the range reported in the literature for PMMA, depending on the analysis method and transition model used. Each method had distinct advantages: the Cody method provided a clearer linear region for amorphous systems, ASF offered a practical approach that did not require sample-thickness information, and DASF enhanced precision through derivative-based analysis. The observation of band gap values corresponding to both direct and indirect optical transitions suggests the presence of multiple effective optical transition pathways in amorphous PMMA. These findings demonstrate that the Cody, ASF, and DASF methods can serve as reliable alternatives to the Tauc method for analyzing the optical properties of polymeric materials.

Downloads

Download data is not yet available.

References

Abed, R. N., Zainulabdeen, K., Abdallh, M., Yousif, E., Rashad, A. A., & Jawad, A. H. (2023). The optical properties behavior of modify poly(methyl methacrylate) nanocomposite thin films during solar energy absorption. Journal of Non-Crystalline Solids, 609, 122257. https://doi.org/10.1016/j.jnoncrysol.2023.122257

Ahmed, K. K., Muheddin, D. Q., Mohammed, P. A., Ezat, G. S., Murad, A. R., Ahmed, B. Y., … Aziz, S. B. (2024). A brief review on optical properties of polymer Composites: Insights into Light-Matter interaction from classical to quantum transport point of view. Results in Physics, 56, 107239. https://doi.org/10.1016/j.rinp.2023.107239

Altalhi, T., Gobouri, A. A., Refat, M. S., El-Nahass, M. M., Hassanien, A. M., Atta, A. A., … Kamal, A. M. (2021). Optical spectroscopic studies on poly(methyl methacrylate) doped by charge transfer complex. Optical Materials, 117, 111152. https://doi.org/10.1016/j.optmat.2021.111152

Aziz, S. B., Abdullah, O. Gh., Hussein, A. M., & Ahmed, H. M. (2017). From Insulating PMMA Polymer to Conjugated Double Bond Behavior: Green Chemistry as a Novel Approach to Fabricate Small Band Gap Polymers. Polymers, 9(11), 626. https://doi.org/10.3390/polym9110626

Bhogi, A., Srinivas, B., Padmavathi, P., Venkataramana, K., Ganta, K. K., Shareefuddin, M., & Kistaiah, P. (2022). Absorption spectrum fitting method (ASF), DASF method and structural studies of Li2O–SrO–B2O3–MnO quaternary glass system. Optical Materials, 133, 112911. https://doi.org/10.1016/j.optmat.2022.112911

Dolgonos, A., Mason, T. O., & Poeppelmeier, K. R. (2016). Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method. Journal of Solid State Chemistry, 240, 43–48. https://doi.org/10.1016/j.jssc.2016.05.010

Haryński, Ł., Olejnik, A., Grochowska, K., & Siuzdak, K. (2022). A facile method for Tauc exponent and corresponding electronic transitions determination in semiconductors directly from UV–Vis spectroscopy data. Optical Materials, 127, 112205. https://doi.org/10.1016/j.optmat.2022.112205

Makuła, P., Pacia, M., & Macyk, W. (2018). How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. The Journal of Physical Chemistry Letters, 9(23), 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892

Mamand, D. M., Muhammad, D. S., Muheddin, D. Q., Abdalkarim, K. A., Tahir, D. A., Muhammad, H. A., … Hassan, J. (2025). Optical band gap modulation in functionalized chitosan biopolymer hybrids using absorption and derivative spectrum fitting methods: A spectroscopic analysis. Scientific Reports, 15(1), 3162. https://doi.org/10.1038/s41598-025-87353-5

Mergen, Ö. B., & Arda, E. (2020). Determination of Optical Band Gap Energies of CS/MWCNT Bio-nanocomposites by Tauc and ASF Methods. Synthetic Metals, 269, 116539. https://doi.org/10.1016/j.synthmet.2020.116539

Nawar, A. M., & El-Mahalawy, A. M. (2019). Simple processed semi-transparent Schottky diode based on PMMA-MWCNTs nanocomposite for new generation of optoelectronics. Synthetic Metals, 255, 116102. https://doi.org/10.1016/j.synthmet.2019.116102

Olasanmi, O., Akinsola, S., Yusuf, K., & Aregbesola, E. (2025). Comparative studies for determining the optical band gap energy of CuSe thin films. Proceedings of the Nigerian Society of Physical Sciences, 191. https://doi.org/10.61298/pnspsc.2025.2.191

Prasad, S. G., & Lal, C. (2022). Spectroscopic investigations of optical bandgap and search for reaction mechanism chemistry due to γ-Rays irradiated PMMA polymer. Biointerface Res. Appl. Chem, 13(2), 184.

Raciti, R., Bahariqushchi, R., Summonte, C., Aydinli, A., Terrasi, A., & Mirabella, S. (2017). Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis. Journal of Applied Physics, 121(23), 234304. https://doi.org/10.1063/1.4986436

Souri, D., & Shomalian, K. (2009). Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60−x) V2O5–40TeO2–xSb2O3 glasses. Journal of Non-Crystalline Solids, 355(31), 1597–1601. https://doi.org/10.1016/j.jnoncrysol.2009.06.003

Souri, D., & Tahan, Z. E. (2015). A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Applied Physics B, 119(2), 273–279. https://doi.org/10.1007/s00340-015-6053-9

Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi (b), 15(2), 627–637. https://doi.org/10.1002/pssb.19660150224

Wu, W., Ouyang, Q., He, L., & Huang, Q. (2022). Optical and thermal properties of polymethyl methacrylate (PMMA) bearing phenyl and adamantyl substituents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 653, 130018. https://doi.org/10.1016/j.colsurfa.2022.130018

Yasin Ahmed, T., Aziz, S. B., & M. A. Dannoun, E. (2024). New photocatalytic materials based on alumina with reduced band gap: A DFT approach to study the band structure and optical properties. Heliyon, 10(5), e27029. https://doi.org/10.1016/j.heliyon.2024.e27029

Yousefi, F., Mousavi, S. B., Heris, S. Z., & Naghash-Hamed, S. (2023). UV-shielding properties of a cost-effective hybrid PMMA-based thin film coatings using TiO2 and ZnO nanoparticles: A comprehensive evaluation. Scientific Reports, 13(1), 7116. https://doi.org/10.1038/s41598-023-34120-z

Downloads

Published

2026-02-14