Comparison of Silver and Aluminum Patches on the Electromagnetic Radiation of a Microstrip Dipole Antenna
Keywords:
microstrip dipole antenna, silver, aluminium, patch, FDTDAbstract
This paper compares silver (Ag) and aluminum (Al) as patch materials for a microstrip dipole antenna to examine how their electrical conductivities affect electromagnetic radiation performance. Both antennas were designed with identical geometrical and substrate parameters using the Finite-Difference Time-Domain (FDTD) method, varying only the patch material. Simulation results show that the resonant frequencies are 2.4700 GHz for Ag and 2.4649 GHz for Al, with excellent VSWR values 1.0839 and 1.0836 and return loss below –27 dB. Both materials exhibit reflected power below 0.2% and have nearly identical radiated power, namely 0.3647 W for silver (Ag) and 0.3646 W for aluminum (Al). Overall, silver and aluminum demonstrate almost identical radiation characteristics. Silver offers slightly better conductivity, while aluminum provides similar efficiency at lower cost, making it a practical alternative for lightweight and economical microstrip antenna applications.
Downloads
References
Abdelrahman, A., Erchiqui, F., & Nedil, M. (2021). Preparation and evaluation of conductive polymeric composite from metals alloys and graphene to be future flexible antenna device. Advances in Materials Science, 21(4), 34-52, doi: 10.2478/adms-2021-0023. https://sciendo-parsed.s3.eu-central-1.amazonaws.com/
Al-Gburi, A. J. A., Radi, N. H. M., Saeidi, T., Mohammed, N. J., Zakaria, Z., Das, G. S., ... & Ismail, M. M. (2024). Superconductive and flexible antenna based on a tri-nanocomposite of graphene nanoplatelets, silver, and copper for wearable electronic devices. Journal of Science: Advanced Materials and Devices, 9(3), 100773, https://doi.org/10.1016/j.jsamd.2024.100773
Banerjee, A., Singh, R., & Kandasubramanian, B. (2025). Additive Manufacturing in Antenna Design: Evaluating Mechanical Resilience and Electromagnetic Efficiency Across Diverse Material Compositions. Journal of Advanced Manufacturing and Processing, 7(4), e70036, https://doi.org/10.1002/amp2.70036
Bouafia, A., Laouini, S. E., Ahmed, A. S., Soldatov, A. V., Algarni, H., Feng Chong, K., & Ali, G. A. (2021). The recent progress on silver nanoparticles: synthesis and electronic applications. Nanomaterials, 11(9), 2318, https://doi.org/10.3390/nano11092318
Cheng, Z., Liu, L., Xu, S., Lu, M., & Wang, X. (2015). Temperature dependence of electrical and thermal conduction in single silver nanowire. Scientific reports, 5(1), 10718, https://www.nature.com/articles/srep10718
Chen, J. (2023). Research on aluminum alloy materials and application technology for automotive lightweighting. J. Mater. Chem, 4, 1-7, doi: 10.25236/AJMC.2023.040601, https://www.francis-press.com/uploads/papers/CCP4HiZcnWXU2vKIyUXpX0PRqOt2tOGQgrbqE5tG.pdf
Czerwinski, F. (2024). Aluminum alloys for electrical engineering: a review. Journal of Materials Science, 59(32), 14847-14892, https://link.springer.com/article/10.1007/s10853-024-09890-0
Helena, D., Ramos, A., Varum, T., & Matos, J. N. (2020). Antenna design using modern additive manufacturing technology: A review. IEEE Access, 8, 177064-177083, doi: 10.1109/access.2020.3027383, https://ieeexplore.ieee.org/document/9207904
Mishra, B., Verma, R. K., & Singh, R. K. (2022). A review on microstrip patch antenna parameters of different geometry and bandwidth enhancement techniques. International Journal of Microwave and Wireless Technologies, 14(5), 652-673, https://doi.org/10.1017/S1759078721001148.
Nakashima, P. N. (2020). The Crystallography of Aluminum and its Alloys. arXiv preprint arXiv:2002.01562, https://doi.org/10.48550/arXiv.2002.01562
Rahmat-Samii, Y., & Densmore, A. C. (2014). Technology trends and challenges of antennas for satellite communication systems. IEEE Transactions on Antennas and Propagation, 63(4), 1191-1204, doi: 10.1109/tap.2014.2366784, https://ieeexplore.ieee.org/document/6945379.
Rano, D., Chaudhary, M. A., & Hashmi, M. S. (2020). A new model to determine effective permittivity and resonant frequency of patch antenna covered with multiple dielectric layers. IEEE Access, 8, 34418-34430, doi: 10.1109/ACCESS.2020.2974912, https://ieeexplore.ieee.org/document/9001040
Rutledge, J. E. (1978). The Thermal Boundary Conductance Between a Thin HELIUM-4 Film and its Substrate. Urbana-Champaign: University of Illinois.
Sharma, S., Tripathi, C. C., & Rishi, R. (2017). Impedance matching techniques for microstrip patch antenna. Indian Journal of Science and Technology, 10(28), 1-16, doi: 10.17485/ijst/2017/v10i28/97642, https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2017/Issue-28/Article25.pdf
Siregar, A. C. P. (2018). Fisika Dasar Jilid 1: Mekanika Dasar (Vol. 1). CV. Kanaka Media.
Siregar, A. C. P., Pramono, Y. H., & Yudoyono, G. (2022). The Effect of Shape on Microstrip Folded Dipole Antenna on the Compatibility Between Simulation and Experimental Method. International Journal of Microwave and Optical Technology, 17(6), 604-612, https://www.ijmot.com/VOL-17-NO-6.aspx
Siregar, A. C. P., Pramono, Y. H., & Yudoyono, G. (2022, November). Reconfigurable Folded Dipole Antenna Based on Resonator and Red Photodiode. In The 4th International Seminar on Science and Technology (ISST-4). Palu: Universitas Tadulako.
Siregar, A. C. P., Pramono, Y. H., & Yudoyono, G. (2023). Analysis of Resonator on Reconfigurable Folded Dipole Antenna from Infrared Photodiode. International Journal of Microwave and Optical Technology, 18(2), 175-183, https://www.ijmot.com/VOL-18-NO-2.aspx
Siregar, A. C., Yudoyono, G., & Pramono, Y. H. (2023, May). A study of silicon effect as a switch on folded dipole antenna. In THE 2ND INTERNATIONAL SYMPOSIUM ON PHYSICS AND APPLICATIONS 2021 (Vol. 2604, No. 1, p. 070003). AIP Publishing LLC. https://doi.org/10.1063/5.0114437
Taher, M., Mao, F., Berastegui, P., Andersson, A. M., & Jansson, U. (2018). The influence of chemical and phase composition on mechanical, tribological and electrical properties of Silver-Aluminum alloys. Tribology International, 119, 680-687, https://doi.org/10.1016/j.triboint.2017.11.026
Tamimah, N. M., Erawati, I., Wardani, D., Mahardhika, P., & Siregar, A. C. P. (2023). The Effect of Paint Thickness Coating on Power Radiated in Above Ground Carbon Steel Pipe for Fire Hydrant System. In The 5th International Conference on Applied Science and Technology. DOI: 10.5220/0011811900003575.
Teixeira, F. L., Sarris, C., Zhang, Y., Na, D. Y., Berenger, J. P., Su, Y., ... & Simpson, J. J. (2023). Finite-difference time-domain methods. Nature Reviews Methods Primers, 3(1), 75, https://www.nature.com/articles/s43586-023-00257-4
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Aslam Chitami Priawan Siregar, Aprilia Dewi Ardiyanti, Ni’matut Tamimah

This work is licensed under a Creative Commons Attribution 4.0 International License.
